

Taste Modifying Considerations for Natural High Intensity Sweeteners

*Robert M. Sobel, Ph.D.
FONA International Inc.
January 28th, 2011
bsobel@fona.com*

FONA International Inc.
1900 Averill Road
Geneva, IL 60134 USA
630.578.8600
www.fona.com

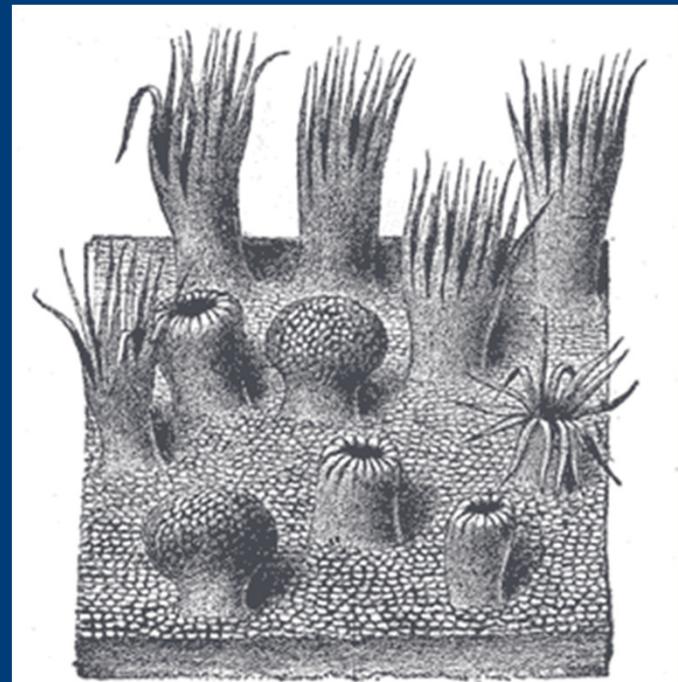

Overview

- Flavor Perception
 - Sensory Inputs and Influence
 - Physiology of Taste and Smell
- Taste Modifying Technology
 - Complex Signal Analysis and Hedonic Effects
 - Strong Tastants and Flavors
 - Congruent Flavors and Phantom Aromas
 - Physical/Chemical Phenomenon
 - Scavenging
 - Binding Interactions

Flavor Perception

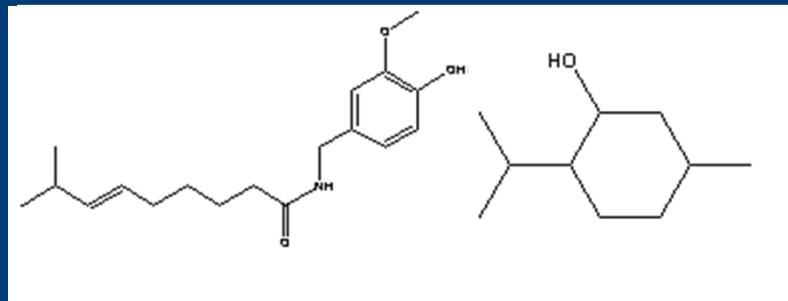
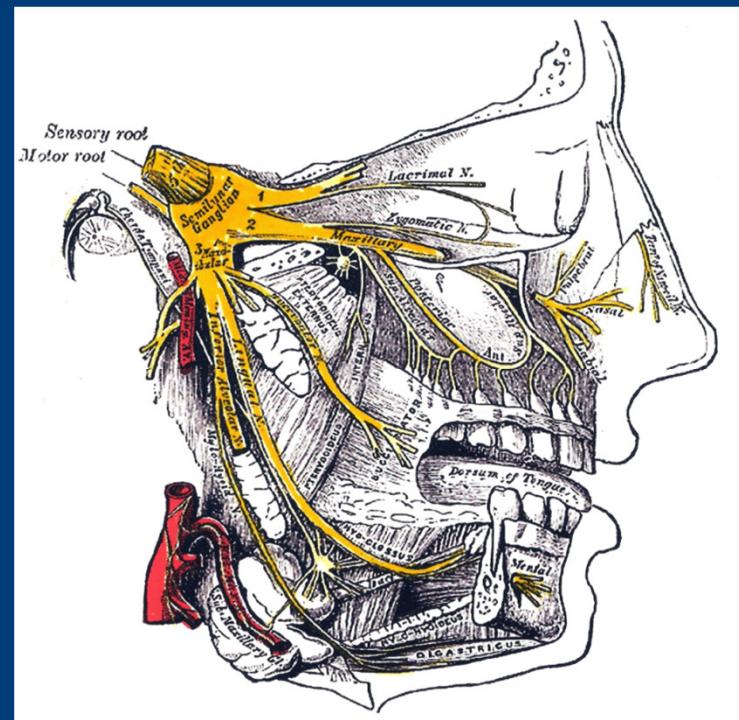
- Taste
 - Sweet, Sour, Bitter, Salty, Umami
- Smell
 - Orthonasal, Retronasal
- Chemosthesis
 - Warmth, Itching, Stinging, Burning
- Tactile
 - Astringency, Pressing, Mouthfeel

Summary: Neural Mapping and Integration of Taste



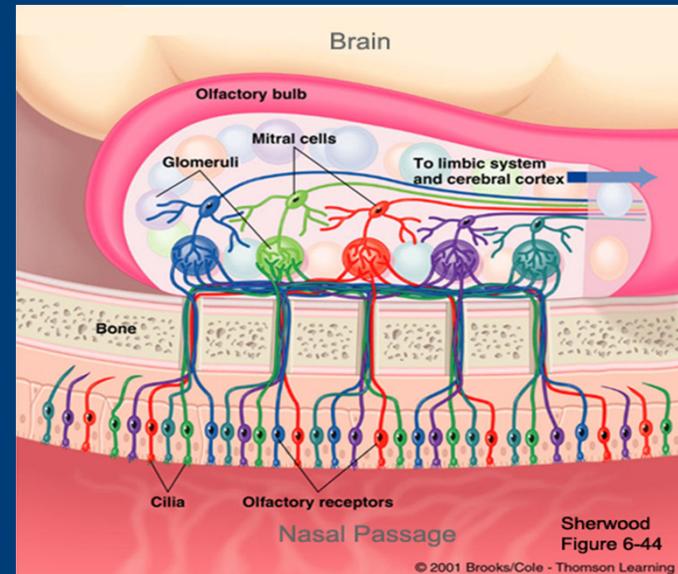
- Humans are hardwired for different taste attributes
 - (+) hedonics
 - Salty (minerals)
 - Sweet (energy)
 - Umami (protein rich)
 - (-) hedonics
 - Sour (rancid)
 - Bitter (poison)
 - The neural network changes based upon experience (e.g. sour cream, stinky tofu, durian fruit)

Gustation Location



- Occurs in taste buds in the papillae
- Taste bud is a bundle of taste receptors, each one specialized for one type of taste
- Taste receptors are a special kind of neural cell that do not have axons
- Taste receptor cells have small pores that are exposed to the environment
- ~1.5 Million taste receptor cells

Chemesthetic Sensation

- The cold and hot sensations caused by heat compounds (e.g., capsaicin) and cooling compounds (e.g., menthol) and tactile sensation
- Temperature sensation caused by transient receptor potential (TRP) channels in the trigeminal nerves


Physiology of Taste

- Taste is closely related to the senses of touch, sight, and hearing
- Tastants are coded in terms of time and intensity
- Insular Cortex (emotion)
- Frontal Cortex, Orbitofrontal Cortex, Hypothalamus (memory, convergence, emotions)
- Amygdale (trigeminal response)

Olfactory Sensation

- Nose
 - Aroma Perception
 - Nasal
 - Retronasal
 - 80% of flavor perception arrives through aroma
 - Physiology
 - 6 million neurons pass through cribriform plate
 - Odor binding proteins transport volatiles across mucus membrane to olfactory epithelium

Physiology of Olfaction

- Aromas interact with the olfactory bulb
 - Spatial and Temporal Patterns
- Olfactory Bulb interact different centers in the brain
 - Pyriform Cortex (core area of smell)
 - Orbitofrontal Cortex (decision making, emotion)
 - Hypothalamus (feeding behavior, pheromone recognition)
 - Limbic System (emotion, memory)

Perception Summary

- Sensations are a learned experiences
- Stimulus → Transduction → Cognition
- Three types of sensorial mechanisms: chemesthetic, gustatory, and olfactory
- Each type of sensation has a unique pathway and uses a different set of nerves
- Sensations can be modified by interfering with the perception process
- Aroma and taste tie into “memory” and “emotion” centers of the brain

Overview: Taste Modifying

- Taste modifying is the process of changing taste attributes through the use of psychochemical or chemical means
- Two Classes of Modifying
 - “**MASKING**” relates to psychochemical
 - “**BLOCKING**” relates to chemical processes

Taste Modifying Techniques

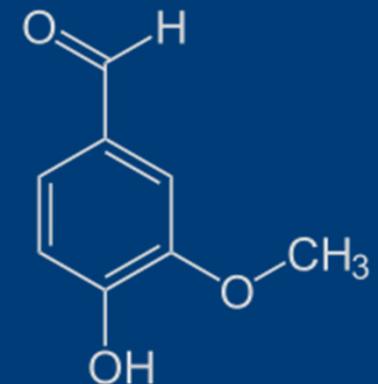
■ Blocking

- Removal of bad tasting components
- Physical Barriers
- Scavengers, Complexing agents
- Bitter taste reducing compounds on a molecular level

■ Masking

- Strong Tastants
 - Salt, Sweeteners, Acidulants,
- Congruent Flavors
 - Complementary to point of modification
- Phantom Aromas
 - Sweet, acrid, salty flavorants
- Chemesthetic

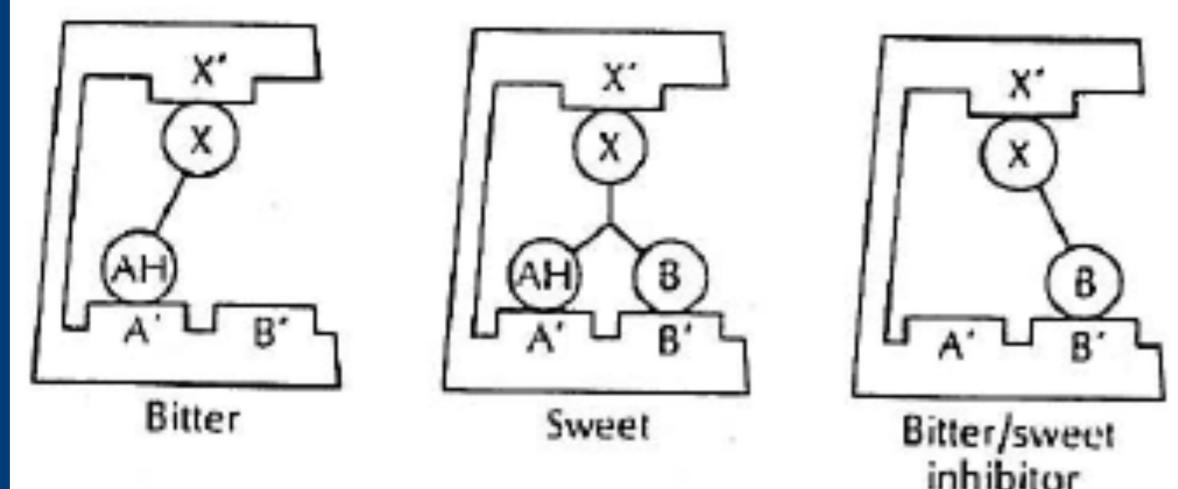
Masking by Strong Tastants, Congruent Flavors, and Chemesthetics



- Taste perception can be masked by congruent flavors
 - Neural Integration (requires knowledge of flavor)
 - Chocolate, Grapefruit
- Taste perception can be masked by alternative tastants
 - Sodium Salts
 - Sweetness
 - pH Modifiers
- Chemesthetics
 - False triggering of hot and cold receptors

Masking by Phantom Aromas

- Adds a taste or odor that causes the mind to ignore the taste or odor of another compound
- Neural map requires training
- Vanillin
 - People become adept at identifying vanillin at a young age because of its association with sweetness. In imperceptible quantities, the person does not taste the vanillin, but it does distract from other tastes.



Suppression of Taste Transduction: Molecular View

- Molecules that can complex or scavenge the offending molecule; can disrupt the transport to receptor
- Antagonists of taste receptor binding sites
- Modulators of taste biding sites
- Modulators of other proteins involved in taste transduction
 - Gustducin, PLC β 2 (phospholipase C B-2), PDE Pathway
- Compounds which can influence the neurotransmitter release, binding, or reuptake
- Modulators of signal quenching

Blocking Taste Molecules: Structure-Function Relationships

- Okai unified bitter/sweet taste receptor model.
 - AH amino or hydrophobic group
 - X second hydrophobic group
 - B Lewis base

Polymers and Complexing Agents

- Sequestering agents and complexing agents need to be used in relatively high concentration
 - Alginates, β -cyclodextrin, cyclofructans, phosphatidic acid / β -lactoglobulin, Treated Egg Proteins, Chitosan
- Bitter compound preferentially interacts with sequestering agent compared to taste receptor

Low-Molecular Weight Compounds for Taste Suppression

- Small molecules present some large possibilities
 - Gymnemic acid (60% suppression; 0.5% usage)
 - Neodiosim (80% suppression; 10ppm usage)
 - Zinc ion (salt of ZnSO_4) (50%-70% suppression; 25mM)
 - Zinc salts can exhibit astringency at >25mM concentration
 - Amino Acids (e.g. L-serine, L-proline)

Summary

- Taste modifying requires an understanding of which taste principle is to be suppressed
- Taste Modification needs to be evaluated in terms of time-intensity
- Literature doesn't support the idea that there is one complete technology available for modifying various taste modalities
 - Masking, Complexation, Encapsulation, Molecular Interactions
- Understand that targeted taste mode suppression can cause suppression of other taste modalities

Conclusion and Outlook

- Off-taste mitigation in the food and beverage industry remains a large challenge
- High throughput matrix approach to identification of taste mode suppressing compounds
- Bitter taste is the most complex quality of all taste modalities due to the large number of T2R receptors
- Future looks to characterize the binding sites of taste receptor cells.

Citations

- Ley, Jakob P; "Masking Bitter Taste by Molecules"; *Chemosensory Perception*; 13 February 2008
- Talebi et al. "Beverage Products." Patent 20090226804. 18 September 2008.
- Slack et al. "Methods of Identifying Modulators of the Bitter Taste Receptor." Patent 20100129833. 17 December 2009.

Thanks for Your Attention

Questions?

FONA International Inc.
1900 Averill Road
Geneva, IL 60134 USA
630.578.8600
www.fona.com