Laura Kalaras R&D Project Manager Barry Callebaut

Everest Cocoa and Chocolate 101

- I. There are 4 main factors that affect the flavor of chocolate and cocoa products.
 - a. Types of beans
 - b. Where the beans are grown
 - c. How they are harvested/fermented/dried
 - d. Processing parameters when the beans are converted from bean to powder or bean to chocolate
- II. Types of Cocoa Beans
 - a. Forestero
 - i. Represents just under 80% of global production
 - ii. Including Africa / Brazil
 - iii. strong taste, bitter and slightly acidic
 - b. Trinatario
 - i. Less than 20% of global production
 - ii. found everywhere
 - iii. Fine cocoa, slightly aromatic similar to Criollo
 - c. Criollo
 - i. Represent only 5% to 8% of total global production
 - ii. Central America / Asia
 - iii. Mild nutty flavor, very aromatic, low bitterness
- III. Cocoa Flavor is influenced by **local** growing factors (Where beans are grown)
 - a. Variety & age of cocoa tree
 - b. Soil content & quality
 - i. Ecuador (Arriba) -- Distinctively fruity, with a floral bouquet
 - ii. Mexico -- Robust, earthy natural flavor
 - c. Altitude & climate
 - d. Cultivation and processing methods: bean storage, drying and fermentation
- IV. How beans are harvested/fermented/dried in different regions of the world
 - a. Africa (Ghana and Tanzania) -- Gold standard of cocoa, combination of strong chocolate with sour & fruity flavors
 - i. Longer fermentation process (~7 days)
 - ii. Sun dried beans
 - b. Latin-America smoky, hammy
 - i. Rainy season requires forced heat drying with fires
 - c. Malaysia sour, green
 - i. Short fermentation period

Conclusion: the flavor profile of cocoa beans is partially and very importantly developed before the cocoa bean comes anywhere close to a cocoa or chocolate factory.

- V. Sensory Evaluation of chocolate and cocoa products
 - a. How to Taste Chocolate
 - i. Use all 5 senses
 - 1. Sight
 - 2. Texture
 - 3. Flavour
 - 4. Smell
 - 5. Listen to the snap
 - b. Taste in relation to smell go ahead and choose a small piece of choco for demo
 - i. Close your nose with two fingers, Taste a piece of chocolate, Wait a few moments, Release your nose. Did you feel the difference? (demo)
 - ii. Initial bite for initial aromas and flavors
 - iii. Let the chocolate melt slowly on your tongue
 - iv. Use of tactile nerves on the surface of soft tissue in the mouth
 - 1. Particles, Fat
 - 2. Resistance to applied forces
 - 3. Hardness, chewiness
 - c. Before tasting remember...
 - i. No spicy foods, coffee, cigarettes for at least 1 h, preferably 1 day
 - ii. Generally no eating or drinking
 - d. Cocoa and Chocolate Descriptors
 - i. Fruity brown fruits, red fruits, winey
 - ii. Charcoal carbon, burned notes
 - iii. Spicy brown spices, peppery
 - iv. Floral perfumey
 - v. Creamy like milk or cream
 - vi. Bitter
 - vii. Etc.
- VI. Processing parameters affecting chocolate flavor
 - a. Origin, as discussed
 - b. Amount of chocolate liquor in recipe
 - i. No liquor- white chocolate
 - ii. Semi-Sweet chocolate 35% generally to around 80%
 - iii. Milk chocolate 10% generally to around 50%
 - c. Addition of other ingredients (Milk, sugar, dextrose, whey)
 - i. Different types of milk powder (roller v spray dried)
 - ii. Amount of sugar/sweetener in recipe
 - iii. Dextrose can contribute to mouthfeel, added to help chips hold shape (hygroscopic)
 - d. Fineness
 - i. Particle size of cooca powder and other ingredients
 - ii. Contributes to mouthfeel as well as fat holding capacity/release of flavor
 - e. Conching
 - i. Vary time and temperature
 - ii. Evaporating off bitter and "sharp" tasting compounds
 - iii. Contribute to "smooth" flavor profile
 - iv. Contribute cooked flavors, carmelization, maillard rxn... particularly in milk choco

- VII. Chocolate tasting
 - a. 1st tasting Different types of Choco (light to dark like wine!)
 - i. White CHW-CI-2010602-014 Ultimate White
 - ii. Milk CHM-P40GHA-529
 - 1. Fruity notes of banana, red fruit, and hints of sweet tobacco and liquorice.
 - iii. Semi Sweet
 - 1. 56.8% Dark #815NV-554
 - 2. 60% Dark #60-40-38NV-595
 - 3. 70% Dark #70-30-38NV-595
 - iv. Compound
 - 1. Main fat is vegetable fat
 - 2. Great for dipping, no need to temper, enrobing baked goods and confections
 - b. Origine Rare Beans sourced from a single region
 - i. Venezuela Origine Dark Chocolate 66.1%
 - 1. Fresh and slightly sour taste with a touch of grapes
 - ii. Origine Sao Thomé 70% cocoa
 - 1. Bitter with refreshing acidity with only slight sweet touches. In contrast, it reveals very subtle aromatic notes of olives, peas, spices and fruits.
 - c. Beans sourced from a single plantation
 - i. Crop to crop variation makes for a very unique product from order to order
 - 1. Alto Del Sol 65% (Peru) # CHD-P65ALTOBIO-528
 - 2. Madirofolo 65% (Madagascar) CHS_Q65MADINOP-528
 - d. Controlled fermentation
 - Selection of preferred microflora to produce cocoa and chocolate with maximized cocoa flavor and smooth, less bitter taste
 - 1. Inaya 65% # CHD-S65INAY-587
 - 2. Ocoa 70% CHD-N70OCOA-587
- VIII. Processing parameters that affect the flavor profile of cocoa powder
 - a. Origin, as discussed
 - b. Alkalizing ("Dutching")
 - i. good way to maintain consistency with varying bean inputs
 - ii. Addition of basic salts to nibs during a controlled cooking process (heat, time, temperature, oxygen levels)
 - iii. Changes the color, pH, and flavor of finished cocoa powder product
 - 1. Color
 - a. Light brown to dark brown/red to dark black
 - b. Can be blended to achieve a specific profile
 - 2. Flavor
 - a. Reduces acidity
 - b. Reduces delicate flavor profile (floral fruity)
 - c. Can enhance strong origin noted (smoky)
 - d. Development of fudgy/alkaline flavor notes
 - 3. pH
- a. increases with the addition of alkaline salt
- b. increases with deepening of color
- iv. More alk = darker color = higher pH

- c. Roasting parameters
 - i. High roast -
 - 1. more cooked notes, roasted flavor, burn notes
 - 2. good for consistency
 - 3. Reduce volatile acids
 - ii. Low roast
 - 1. retain fruity/floral origin flavors
 - 2. Not as many volatile acids burned off, acetic flavor can remain
- d. Fat availability
 - i. Cocoa can be 0% low (10-12%) or high fat

1.

- IX. Cocoa tasting
 - a. Brownie tasting different levels of alkalization
 - i. Natural
 - 1. Bitter upfront, spicy notes sometimes, more cakey texture
 - ii. Medium
 - 1. Fudgier, more lingering chocolatey notes, darker color
 - iii. Red
 - 1. Densest brownie, darkest color, sometimes greasier, different kind of chocolatey/ alklaline note than the medium dutch powder
 - a. Alk affects water absorption/Aw
 - b. Ice Cream Fat levels
 - i. Less cocoa solids in high fat powders- sometimes lighter color of finished product
 - 1. More cocoa particles in the lower fat IC so it can actually taste more chocolatey than the high fat
 - ii. Cocoa butter has higher melt point than milk fat coats mouth
 - 1. Gives a more high-end/luxurious mouthfeel
 - iii. Typically recommend hi fat powders for a more gourmet type product, particularly dairy
 - 1. Also good for baked goods for a softer, less crumbly texture.